Categories
Math

The Relationship Between Model Theory and Category Theory

Both model theory and category theory formalize the idea of “structure” in some way. Is this purely different formal interpretations of an informal idea, or is there more of a formal relationship beyond this between these two subjects?

Categories
Math

Mathematical Structure to Define a General Kind of Basis

Earlier, on August 6, 2021, I had tried to formalize a mathematical concept that would generalize the idea of a “basis,” as seen in the theory of vector spaces or the Fundamental Theorem of Arithmetic. I discuss in this post what I tried and what I learned.

Categories
Math

Algebraic Structures Applicable to All Sets 2

In this post, we attempt to better understand the questions posed in this post and its follow-up by formalizing them generally in the language of universal algebra.

Categories
Math

General Field Applicability to Infinite Sets

In this post, we undertake a more focused investigation into the conjecture that every infinite set can be turned into a field, as stated in this post. (We assume the Axiom of Choice throughout.)

Categories
Math

Algebra of Color Mixing

We consider how we can do algebra with colors. In other words, if we take the set of all colors, what algebraic structures can it be endowed with? In this post, we look at the algebra of color mixing: what is the structure of the algebra that is induced by the operation of color mixing? (What properties does color mixing satisfy?)

Categories
Math

Non-Standard Axioms for Various Math Structures 3

In this post, we continue the discussion from the previous in the series.

Categories
Math

Generalization of Modular Arithmetic to “Forced Closure” Operations

We can think of modular arithmetic as amending operations on Z to “wrap around and stay in Zn.” Can we generalize this idea to arbitrary groups, or even general algebras?

Categories
Math

Sine Angle Product Formula 2

In this post, we continue the discussion from a previous post about the existence of a suitable sine angle product identity.

Categories
Math

Sequence Containment-Type Results

Let P denote the sequence of primes and A(a,d) denote the arithmetic progression with starting term a and common difference d. Dirichlet’s Theorem on Arithmetic progressions says that if \gcd(a,d) = 1, then A(a,d) contains infinitely many members of P. But the Green-Tao Theorem says that for any k, there exist a,d such that P contains k members of A(a,d). In some sense, these results look like “inverses” of each other from the perspective of sequence containment: at a high level, given two sequences S,T, one result talks about S containing members of T, and the other talks about T containing members of S.

Can we make this analogy a bit more precise?

Categories
Media and Communication

The Power of Records

It was only recently that I started posting a lot more of my content on this website. Some of it represents new ideas that I started thinking about in the past few months, while other posts reflect writings that have been sitting on my laptop for months or years, where I then reconsider the ideas with my modern knowledge and frame of mind. This has felt liberating for a number of reasons, one of which is something I have been recently thinking about: the power of records.